Chinese remainder theorem for cyclotomic polynomials in Z[X]
نویسندگان
چکیده
منابع مشابه
Computing Hilbert class polynomials with the Chinese remainder theorem
We present a space-efficient algorithm to compute the Hilbert class polynomial HD(X) modulo a positive integer P , based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(|D|1/2+ log P ) space and has an expected running time of O(|D|1+ ). We describe practical optimizations that allow us to handle larger discriminants than othe...
متن کاملComputing Igusa Class Polynomials via the Chinese Remainder Theorem
We present a new method for computing the Igusa class polynomials of a primitive quartic CM field. For a primitive quartic CM field, K, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of Jacobian...
متن کاملRobustness in Chinese Remainder Theorem
Chinese Remainder Theorem (CRT) has been widely studied with its applications in frequency estimation, phase unwrapping, coding theory and distributed data storage. Since traditional CRT is greatly sensitive to the errors in residues due to noises, the problem of robustly reconstructing integers via the erroneous residues has been intensively studied in the literature. In order to robustly reco...
متن کاملA Multivariable Chinese Remainder Theorem
Using an adaptation of Qin Jiushao’s method from the 13th century, it is possible to prove that a system of linear modular equations ai1xi + · · · + ainxn = ~bi mod ~ mi, i = 1, . . . , n has integer solutions if mi > 1 are pairwise relatively prime and in each row, at least one matrix element aij is relatively prime to mi. The Chinese remainder theorem is the special case, where A has only one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2015
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2015.04.006